A Subgradient Algorithm for Nonlinear Integer

Programming*

Zhijun Wuf

Abstract. This paper describes a subgradient approach to nonlinear integer pro-
gramming and, in particular, nonlinear 0-1 integer programming. In this approach, the
objective function for a nonlinear integer program is considered as a nonsmooth function
over the integer points. The subgradient and the supporting plane for the function are
defined, and a necessary and sufficient condition for the optimal solution is established,
based on the theory of nonsmooth analysis. A new algorithm, called the subgradient al-
gorithm, is developed. The algorithm is in some sense an extension of Newton’s method
to discrete problems: The algorithm searches for a solution iteratively among the integer
points. In each iteration, it generates the next point by solving the problem for a local
piecewise linear model. Each local model is constructed using the supporting planes for
the objective function at a set of previously generated integer points. A solution is found
when either the optimality condition is satisfied or an iterate is repeated. In either case,
the algorithm terminates in finite steps. The theory and the algorithm are presented.
The methods for computing the supporting planes and solving the linear subproblems are

described. Test results for a small set of problems are given.

Abbreviated title: Nonlinear Integer Programming

Key words: Nonlinear integer programming, subgradient methods, non-
linear least squares, nonlinear constrained optimization, linear integer
programming, branch-and-bound methods

AMS (MOS) subject classification: 65K05, 65K10, 90C10, 90C27,
90C30

*This work is part of author’s Ph.D. thesis directed by Professors John E. Dennis and
Robert E. Bixby at the Department of Mathematical Sciences, Rice University.

TCurrent Address: Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, 11, 60439.

1 Introduction

We are interested in solving a class of nonlinear integer programming prob-
lems

min f(z) (1)
r€ B"={0,1}"

or its natural extension

min f(z) (2)
x € R* integral,

where f: R™ — R is a general nonlinear function.

This class of problems contains many AP-hard problems and has im-
portant theoretical and practical applications. For example, consider the
problem that for any norm || ||,

min || b— Az || (3)
r €R" mtegral,
where b € R, and A is an mxn matrix with integer elements. This problem,
called the closest vector problem in integer programming, has been proven
to be A/P-complete even for simple norms such as Iy and [, [11, 24, 25].
Another example is related to the solution of a class of more general

problems: mixed-integer nonlinear programming problems. A mixed-integer
nonlinear program

min g(z,y) (4)
yeR™
x € R* ntegral

can be formulated, under appropriate assumptions, as a nonlinear integer
program

min f(2) (5)
x € R* integral,

where

f(z) = min {g(z,y): y€ R"}. (6)

If 2 is bounded, Problem (2) can be transformed into Problem (1).
Therefore, we focus only on Problem (1) in this work.

Several approaches to the solution of Problem (1) have been studied.
The main ones are enumeration, algebraic, and linearization approaches
[1,2,7,16,17, 20, 21]. For a general review, readers are referred to [8, 13, 19,
22, 26]. Most of these approaches consider problems with special structures.
For problems with general objective functions, such as Problem (3) and
Problem (4), they usually do not apply, owing to their special requirements
for the form of the objective function.

In this work, Problem (1) is considered for general cases. A subgradi-
ent approach to the problem is proposed. In this approach, the objective
function for a nonlinear integer program is considered as a nonsmooth func-
tion over the integer points. The subgradient and the supporting plane for
the function are defined, and a necessary and sufficient condition for the
optimal solution is established, based on the theory of nonsmooth analysis
[6, 28, 29]. A new algorithm, called the subgradient algorithm, is developed.
The algorithm is in some sense an extension of Newton’s method to discrete
problems: The algorithm searches for a solution iteratively among the in-
teger points. In each iteration, it generates the next point by solving the
problem for a local piecewise linear model. Each local model is constructed
using the supporting planes for the objective function at a set of previously
generated integer points. A solution is found when either the optimality
condition is satisfied or an iterate is repeated. In either case, the algorithm
terminates in finite steps.

This paper presents the theory and the algorithm for the subgradient
approach to nonlinear integer programming. The methods for computing
the supporting planes and solving the linear subproblems are described.
Test results for a small set of problems also are given.

The paper is organized as follows: Section 2 introduces the definitions
of subgradient and supporting plane and presents the necessary and suffi-
cient optimality condition. Section 3 describes the subgradient algorithm
and discusses the stopping criteria, the complexity issues, and the solution
properties. The issues on computing supporting planes and solving piece-
wise linear subproblems are addressed in Sections 4 and 5, respectively. The
mathematical formulations are derived, and the methods for solving the
subproblems are given. Section 6 describes the numerical test. Section 7
contains concluding remarks.

2 The Nonsmooth Theory

Given a nonlinear objective function f : R" —— R, consider the restriction
of the function f : B®™ — R. Let this function be denoted by f". It is a
function over the discrete set of all 0-1 integer points and is nondifferentiable,
or, in other words, nonsmooth.

Problem (1) is equivalent to the following nonsmooth problem:

min f"(z) (7)
r€ B"={0,1}".

We call f and f" the continuous and discrete objective functions for
Problem (1), respectively.

Definition 1 A subgradient of f7 at & € B™ is a vector s € R™ such that
sT(z —2) < fr(x)— fr(z) Yz € B". (8)

Definition 2 The subdifferential of f© at & € B™ is the set of all subgradi-
ents of f" at & defined by the following equation:

of'(z)={se€ R": sl(z—z) < f'(x)— f"(Z) VYx € B"}. (9)

Definition 3 A supporting plane of f" at & € B™ is a hyperplane defined
by the following equation:

g@) = f1(7)+ sT(x - 7), s€df(F) (10)

A supporting plane is said to be “good” if it is tight as a bounding func-
tion. For example, in Figure 1, B is better than A, and C is the best. Given
a subgradient, we can define a supporting plane, and vice versa. Therefore,
the notions of subgradient and supporting plane are correlated.

Theorem 1 Let f be convex and differentiable, and V f(Z) be the gradient
of fat . Then, Vf(z)€ df"(z) Vz € B".

Proof: It suffices to show that for any # € B,

Vi@ (x - 7)< f(2) - f() Va € B". (11)

X

Figure 1: Simple examples for supporting planes

A

For = z, the inequality (11) holds obviously. So, we need to consider
only # &, ® € B". Since f is differentiable, the directional derivative of f
at @ in the direction of (z — 7), defined as

lim

f(@+ Mz — 7)) - f(2)

A—0

A b

exists and is equal to V f(2)T (2 — 2).
Since f is convex, for A € (0, 1],

flz) = f(2)

which implies

flz) = f(2)

A
fQa+ (1= Nz) - f(z)
A
[z + Mz —2)) - f(z)
A ?

(12)

(14)

Theorem 2 The subdifferential df"(z) of f" at T € B™ is a convex set.
Proof: For any z, let sy, sy € 0f"(Z). We show that
Asy+ (1= XN)sg € 0f7(Z) for any A € [0, 1]. (15)
Since s1, sg € 0f"(7),

s1(x — @)

<
solx —7) <

So, for any x € B" and A € [0, 1],

(As1+ (1= A)sg)(z —)

Asi(z —Z)+ (1 = A)sg(a — @)

A () = f(2) + (1= N)(f(z) = (7))

= f(z) = f(2), (18)

which, by the definition of a subgradient (8), implies

S~—r

IN

As1+ (1= XN)sy € 0f" (&) for any A € [0, 1]. (19)
a

Theorem 3 A necessary and sufficient condition for z* € B™ to be a min-
imizer of f* (and also f) over B™ is 0 € 0 f"(x*).

Proof: By the definition of a subgradient (8), 0 € df"(2*) for 2* € B" if
and only if

0(z —2™) < ff(z)— f(a7) Ve € B", (20)
which just means that
(@) < fi(=) Yx € B”. (21)

a

Note that the subgradient of a function at a given point may not be
unique. Usually, there are infinitely many. No general methods can be
used to compute all the subgradients, especially for nonlinear nonsmooth
functions. However, as we will see in the following sections, we can determine
a zero subgradient without computing the whole set of the subdifferential.

3 The Subgradient Algorithm

A subgradient algorithm, as outlined in Figure 2, solves a nonlinear integer
programming problem with the following iterative procedure. The algorithm
assumes a starting point () € B". At the ith iteration (i starts from 0
to m, an arbitrarily large number), if f" has a zero subgradient at 2@ or
@ = 20 for some j < i, then () is an optimal solution, and the algo-
rithm stops. Otherwise, a supporting plane g for f” at 2 is generated.
The supporting planes g, for all 7 < 7 define a piecewise linear function
p(2) = maxj<i{g,;(x)}. An linear integer subproblem, min,ep» p(2), is
then solved, and the solution is used by the algorithm as z(*+1) for next
iteration.

The algorithm has two stopping criteria. One is the optimality condition
stated in Theorem 3. The other is to test whether an iterate is repeated.
We will show in the following that if an iterate is repeated, it must be
an optimal solution. This criterion prevents cycling in the algorithm and
guarantees that the algorithm will terminate in a finite number of steps.

Theorem 4 Let pi¥) be the piecewise linear function constructed in the ith
iteration of Algorithm 1. Then for any i, pi)(z) < f"(z) Yz € B".

Proof: As presented in Algorithm 1,
p(z) = max{g(x): g€ H}
= max{gV(z): ¢ e H}, (22)

0<j<i

where ¢U) € H is a supporting plane for f” generated in the jth iteration
of the algorithm. By the definition of a supporting plane (10),

g(j)(w) - fr(x(j)) + (5(]))T(x _ x(j)% (23)

where () € B™ is the jth iterate, and sU) € 3f7°($(j)). By the definition of
a subgradient (8),

(s (2 — 2Dy < fr(2) = f7(2U)) Yz € B". (24)
So, ¢ (z) < f(x) Vx € B". Since this is true for all j, 0 < j < 4,

max{gW(a): g € H} < J'(x) Ve € B, (25)
which means that p{d)(z) < f"(z) V& € B". O

Algorithm 1 {A subgradient algorithm}

0 {Initialization}
T=¢,H=¢,1=0
pick up () e B”
1 {Iteration}
do while : < m
1.1 { Optimality testing}
if 200 € T or 0 € 9f"(2) is known then
2 is an optimal solution, stop
end if
1.2 { Generating supporting planes}
T =Tu{z}
H=HU{g,w: gyo(z)=fr(a@)+ T, (2 —2®), s, €df(2)}
1.3 {Solving a linear integer minimax problem}
find a solution 2*) for
mingcp» {p(z)=max {g(x): g€ H}}
1.4 { Updating}
1=1+1
2 = ()

end do

Figure 2: Subgradient algorithm

Theorem 5 Let 29 and 2+ be the optimal values of the linear integer
minimaz subproblems in the ith and (¢ + 1)th iterations in Algorithm 1,
respectively. Then, for any i, 20 < 20 [f in addition, (Y is unique
and Y £ (42 then 20) < (41,

Proof: First we prove () < z(i+1),
As defined in Algorithm 1,

0 — (i)
2 = xrg}gnnp (z), and (26)
(i+1) — (i+1)
z = xrg}gnnp (z). (27)

So, it suffices to show that p(i)(x) < pUitY) va € B™. By the definition of
p) for any z € B",

() =)
p(x) = Orgjgg{ @) ¢V e H}
)
< o (V@) gV e
pUH(2). (28)

So, p(i)(x) < p(i"'l)() Vo € B", and 20 < 1),
Now we show that () < 2(2"'1) if 20+1) the solution to the subproblem
in p®
min p(a), (29)
is unique, and (1) # £(+2) The proof is by contradiction.

Suppose that Problem (29) has an unique solution 201 and that 2() =
Z(H'l)‘ Since Z(Z) = Z(H'l)7 p(l)(w(H’l)) = p(H'l)(x(H'z)) But7

(1) (i+2)) = (i+2)) . 40)
pTIETT) = Ogglggil{ (@3) gV e 1y
= max {p0(2(+), gD, (30)

Then, p ((74+1)) sz (z-|—2))
However, p{(2(+1)) < pd(2(+2)) by the uniqueness of z(+1) and the

fact that w(l"'l) 2(+2) Hence, we have a contradiction. Thus, () +
2+ and 2() can only be strictly less than z(+1) by the first argument of
the theorem. a

Theorem 6 LetT = {96 € B", j < i} be the sequence of integer points
generated by Algorithm 1 up to the ith iteration. If 3j < i such that z\9) =
2@, then @) must be an optimal solution.

Proof: Let j be the integer such that j < i and 2() = 20,
As defined in the algorithm, () is a solution to the linear integer sub-
problem

gg}gnnp(i_l)(x). (31)
So,
P @Dy < pli=D(a) Y € B". (32)
By Theorem 4,
PO (2) < fr(2) Vo € B". (33)
Thus,
Py < () Vo € B" (34)
and, in particular,
p(i—l)(x(i)) < ff(x(i))' (35)
But,
p(i—l)(x(i)) - ogrilgf(q{g(k)(x(i)): g™ ey
> g0
— g(j)(w(j))
=)
= f(), (36)
Then, f7(2®) = pl=(2)), and
(D) < £ (2) Yz € B". (37)
O

Theorem 7 Algorithm 1 is finite.

Proof: It follows immediately from Theorem 6 and the fact that there are
only finitely many distinct points x € B". a

10

Corollary 1 Let T = {x(j) € B™, j < i} be the sequence of integer points
generated by Algorithm 1 up to the ith iteration. Let zUi) = fr(x(]")) be the
minimal of f* in T. Then,

2070 < o < 200 (38)
and also
|2U8) — 6=V = ¢ for ¢ sufficiently large, (39)

where 207V is defined as in Theorem 5, and z* is the optimal value of f7
mn B™.

Proof: First we prove the inequalities in (38).
By Theorem 4,

P () < f(2) Y € B". (40)
Therefore,
(i-1) _ . (i—1) . r %
z = min p (z) < xrg}gnnf (z)=2" (41)

The second inequality follows from the fact that any feasible point = €
B"™ yields an upper bound f"(z) for the optimal value of f”.

Now we show the statement (39).

By Theorem 6 and Theorem 7, the algorithm stops at the ¢th iteration
if () = 2() for some j < i. Then as in the proof for Theorem 6,

A0 = p @) = et = (42)
Since now zUi) = 2*, L-1) — () -

Corollary 1 simply implies that at the ¢th iteration, the algorithm finds
the best solution 20¢) among all iterates. The difference between the ob-
jective value at this solution and the optimal value of f" is bounded by
|08 — 2(=1)| and the bound also decreases with increasing i.

Finally, since it is not straightforward to test the optimality condition
in Theorem 3, we state a more constructive, but equivalent, necessary and
sufficient condition in the following theorem.

11

Theorem 8 A necessary and sufficient condition for z* € B™ to be a min-
imizer of f* (and also f) over B™ is that s € 0 f"(«™) such that

5 <0 Vi such that 27 =1, (43)
and
5 >0 Vi such that a7 =0. (44)

Proof: Necessity follows directly from Theorem 3 and the fact that s = 0
satisfies conditions (43) and (44). For sufficiency, suppose that 3s € 9 f"(2*)
satisfying conditions (43) and (44). Then,

stz —a*) < fr(x) - f7(z7) Ve € B, (45)
and
0< s (z—a”) Ve € B". (46)
Therefore,
O(z —2) < sl(z—a%)
< fM(z) = fr(a7) Vo e B", (47)
and then 0 € df"(2*). By Theorem 3, 2* is a minimizer of f". O

4 Computing the Supporting Planes

In this section, we describe the methods for computing the supporting
planes. Related subproblems are derived. The solution methods are given.
4.1 Optimizing a Supporting Plane: A Lifting Process

In the subgradient algorithm, a supporting plane for the discrete objective
function at a given integer point is required at each iteration. In general,
a supporting plane ¢ for a discrete objective function f” at a given integer
point & € B™ is a linear function, and

g(z)= fr(@)+ s (x—7) s€df(z), xecR" (48)

To obtain this function, we need to compute a subgradient s € df"(z) and,
in particular, a subgradient such that the supporting plane supports the

12

objective function as tightly as possible. However, 0 f" usually is not given

explicitly, and therefore it is not easy to obtain an arbitrary subgradient.
Note that in principle, given an arbitrary objective function f for Prob-

lem (1), we can always replace it with a strictly convex function f without

changing the solution of the problem. For example, we can define a function
q: R" — R such that

n

g(z) = (i = 1/2)* — n/4F, (49)

=1

where k£ > 0 is an integer, and let

flx) = f(2) + paz), (50)

where p > 0 is a sufficiently large number. Since ¢(z) = 0, Vo € B", f
and f agree on all x € B™. Therefore, they correspond to the same discrete
objective function f” and have the same solution set. However, since ¢
is strictly convex, f is strictly convex for p sufficiently large. Therefore,
without loss of generality, in the following discussion, we always assume
that the objective function f for Problem (1) is strictly convex.

By Theorem 1, if f is convex and differentiable, V f(z), the gradient of
[at z, is a subgradient of f" at z. A trivial way to choose s, therefore,
is to set s to V f(z). Unfortunately, with this subgradient, ¢ usually is too
“steep” to be a preferred supporting plane;

To obtain a “better” subgradient, we introduce a method called the
lifting process. The process starts with the subgradient s = Vf(z) and
then updates it such that the corresponding supporting plane g is “lifted,”
in other words, made “flatter” or “closer” to f”. The updated s remains a
subgradient as long as g still supports f” at z:

glz) < f7(2) Vz € B". (51)

The lifting process continues until the best possible supporting plane is
obtained. However, for every update, the condition (51) must be verified.
For a given subgradient s, if S is defined such that = € S if f(z) < g(z),
the condition (51) is equivalent to that the interior of 5 does not contain
0-1 integer points.

Figure 3 illustrates with a simple example how the lifting process is
conducted and the condition (51) is guaranteed. In this example, the lifting
process is applied to find a subgradient of f at z. First, s is set to V f(z).

13

x3

f(x)

9(0)

Figure 3: The lifting process for computing subgradients

14

The supporting plane defined by this subgradient is g(g). Then, s is updated
to “lift” g(o) a little bit, and g1y and S(;) are obtained. Define

A={2€eR": ;>20,ifz;=1,and 2; <1if ;, =0, i =1,...,n}. (52)

Geometrically, A is a region that contains B™, and its boundary is formed
by hyperplanes 2; = 1 —z;, ¢ = 1,...,n. Once it has been observed that
the interior of A contains no points in B™ other than Z, the condition (51)
holds for g(y) if 5y is inside of A. Therefore, in order to obtain better
subgradients, s can further be updated until the corresponding S hits the
boundary of A (e.g., g2y and 5(3) in Figure 3).

Let g(o) be the supporting plane of f" at @ such that

go)(x) = f1(2) + V(@) (z - 2). (53)
Then, we have the following formal definitions and results.

Definition 4 For any i > 0, let g;_1) be a supporting plane of " at T and
9(iy the supporting plane of f" obtained by updating the gradient of g(;_y).
Then, g is said to be lifted from g;_1) if 9¢y(%) > g—1y(z) Vo € B" and
there exists at least one point v € B" such that ggy(x) > gi—1)(2).

Definition 5 For any s € R", the following set
S={zeR": f(z)<g(z)} (54)

s called the projection set of s on R™ with respect to the function [at z,

where g is defined such that g(z) = f"(z) + sT (z —), Yz € R".

Theorem 9 For any s € R™ and convex function f, the projection set S of
s with respect to f at & is convez.

Proof: Let z, 2’ € 5. We show that
A+ (1=XNa" el VA e o, 1]. (55)

This follows immediately from the fact that

fz+(1=A)2") < Af(2)+ (1= A)f(2))
< Agla) + (1= A)g()
= g(Az+(1-N)), (56)
because that f is convex, x, 2’ € S, and ¢ is linear. a

15

Theorem 10 For any s € R", s € f"(&) if and only if
x g S5° Vz € B", (57)
where S° is the interior of the projection set S of s with respect to [at z.

Proof: First we prove sufficiency:
Ifx & S°Va € B, f(x) > g(z) Yo € B, where g(z) = f"(z)+s' (2 —2).

This is equivalent to
fr(x)> f1(z) + 5T (z - 7) Yz € B". (58)

So, s € 0f"(z) by the definition of a subgradient (8).
Now we prove necessity:

If s € 0f7 (),

sz —7) < f(z)— f'(Z) Ve e B". (59)

Then,
g(z) < f(x) = f(z) Vo € B", (60)
implying that z ¢ S° Va € B". 0

Theorem 10 provides a necessary and suflicient condition to check whether
s € 0f"(x). While this condition cannot be tested directly, a sufficient con-
dition in Theorem 11 can be used instead in practice.

Theorem 11 Let A and S be defined as in (52) and (54), respectively.
Then, for any s € R", s € 9f"(z) if S C A.

Proof: It is easy to see that z is the only point in B™ contained in A°,
the interior of A. Since § C A, z is also the only possible point in B™ that
can be contained in 5°, the interior of §. But, z is a boundary point of 5.
Therefore, z ¢ S° Va € B™, and s € df"(z) by Theorem 9. O

4.2 A Nonlinear Least Squares Formulation

Now consider the updated subgradient s and its corresponding projection
set 5. Let d; be the distance between 5 and the ¢th boundary of A, x = ¢;,
where ¢; = 1 — Z; by the definition of A in (52). Then, d = (d;,...,d,) is a

16

function of s, and the lifting process described in the preceding section can
be formulated mathematically as a special nonlinear optimization problem:

min [d(s) || (61)
st. di(s)>0 i=1,...,n.

Problem (61) does not need to be solved exactly. A feasible solution will
suffice, since only a “good-enough” subgradient is sought. The problem can
be solved by using the following two relaxation rules:

1. Keep the feasibility while making the objective function value as small
as possible but not necessarily optimal.

2. Minimize the objective function while keeping the amount of infeasi-
bility as small as possible but not necessarily zero.

Algorithm 2 (Figure 4) is designed to obtain an approximate solution
to Problem (61). First, s is set to an initial value. Then, a “better” s is
obtained by updating back and forth each component of s. If d(s) > 0,
s is updated so that the corresponding supporting plane can be “lifted”.
Otherwise, some components of s are updated to “lower” the supporting
plane. The algorithm stops when a good enough subgradient is obtained.

While Algorithm 2 usually requires many updates, another approach is
to solve the problem without considering the constraints:

min || d(s)] . (62)

The solution to this problem, for the case of I3 norm, can be obtained by a
standard nonlinear least squares method [10, 27]. Let s* be the solution, and
€ =|| d(s*) || be the optimal value. Then, we say s* is an e-approximation to
the solution for Problem (61) in the sense that it solves exactly the following
problem:

min [d(s) || (63)
st. di(s)+e>0 i=1,...,n.

With this approximation, the total amount of infeasibility caused by s* is
always bounded by a quantity in the order of O(€). The smaller the € is, the
better the solution s* will be.

17

Algorithm 2 {An update method}

0 {Initialization}
for:=1,...,ndo
set initial values for s;, s;, and 3;
end do
1 { Updating}
if d;(s) > 0 Vi then
if || d(s) || small enough, stop

for:=1,...,ndo
S; = 5
S; = 8; + (52' — 82')/2
end do
else
for Vi such that d;(s) < 0 do
S; = 8;
si = si— (8 — 5;)/2
end if
2 { Backtracking}
goto 1

Figure 4: An update method

18

4.3 Computing Extreme Points of a Convex Body

No matter what methods are used to solve Problem (61), the major compu-
tation will be the evaluation of the function d(s) for all s. Fori=1,2,...,n,
d;(s) is computed by finding the extreme point of S along the z; direction
and then calculating the distance between the extreme point and the ith
boundary of A. The extreme point of S along the z; direction can be found
by solving a constrained optimization problem:

min z; — 2¢;1; (64)
st. x eSS,
or equivalently,
min z; — 2¢;z; (65)

st. f(x) —g(z) <0,

where f, g, and 5 are defined as before, and ¢; = 1 — ;. This problem is
not very hard to solve. Its objective function is linear, and there is only one
nonlinear constraint. As we will show below, the solution of this problem is
unique, and the first-order necessary condition is also sufficient. Therefore,
the solution can be obtained by solving a system of nonlinear equations.
In the rest of this section, we discuss mathematical properties related to
Problem (64). We describe how to solve the problem in greater detail in
next section.

For simplicity, we assume in the following statements that z; = 1 V.
Then, Problem (64) is reduced to

min (66)
st f(z) - gla) < 0.
Lemma 1 Given s € 9f"(z) and its corresponding projection set S, if S is

closed and bounded, the solution of Problem (66) exists and is unique.

Proof: Existence can be proved by the fact that the objective function is
continuous, and 5 is closed and bounded.
Now we prove the uniqueness. The proof is by contradiction.
Suppose that ' and ' are both solutions of Problem (66). Then, z*
Azt + (1 — A)i* for any A € (0,1) is also a solution, because #! = 2!, and

2= Aab4 (1= N)i
= Azt (1 -z
= (67)

K3

19

However, since f is strictly convex and z', z* € 9,

J() < A+ (1= NG
O+ (1= A)g(#)

(=), (68)

which implies that 2 is an interior point of S. This is a contradiction to the
fact that any solution of Problem (66) is an extreme point of 5. O

M
Ag(

Lemma 2 For Problem (66), define a Lagrangian function

Flasu') = o+ u'(f(z) — g(2)), (69)

where u' is a scalar. Then, for any i, 0 <i < n, a necessary and sufficient
condition for z* to be an optimal solution to Problem (66) is that 3u* > 0
such that

u(fleh) = f(@) - ()) =
fla') = f(z) = " (2" = 7)

which, with V' (z%;u') written explicitly, is equivalent to

IN

0, (70)

0
w(f,(x') = s2) = 0

=4
3
S
o2
C
S
=
N
R
|
VN
R
R
Il

w(fh (2 = i) = 0
L+ u'(f(a)=si) = 0 (71)
w(f, (@) =sip) = 0

ll
=)

W' (f, (@) = sn)
f-a)) =

—-1)) <

& |

u'(f(a') = fz) = 5T
(f(z') = f(7) = s"(a*

X

&
& I

Proof: Necessity follows directly from the first-order necessary condition
for a nonlinear constrained optimization problem [12, 15, 31].

20

Note that the ith equation of (71) implies that u' > 0, and V2['(2'; u') =
uivzf(xi) is positive definite. So, the necessary condition is also sufficient
by the second-order sufficiency condition for a nonlinear constrained opti-
mization problem [12, 15, 31]. O

Lemma 3 Given § € R" and its corresponding projection set ﬁ, let & be
an extreme point of S along the x; direction, then there is a neighborhood
N(8, €) of § and a function z* : R™ — R" continuous and differentiable
in N(8, €) such that

it = 2'(5). (72)

Proof: Rewrite (71) in the following way:

Fioq(a'sutys) = u'(fl_ (¢%) —si1) =

0
Fahuiss) = 14+ ui(fl () = s) =0 (73)
F(atu'ys) = u'(fr,,(2") = sip1) =0

Fuasu'ss) = w'(fy,(a') = sn) =0
H(zhu'ss) = (f(a') = f(7) - s"(a' = 7)) = 0,

where the last equality holds because u’ > 0 from the ith equality and

w(fle') = f(#) = sT(a' = &) = 0. (74)
So, the inequality in (71) is removed.
Let F'= (Fy, Fy, ..., I, H). Then (73) is equivalent to
F(z';u';s) = 0. (75)

By Lemmas 1 and 2, given 4, 33 and @' such that F(#%; 4% 8) = 0. And

Z', 4 are also unique.

21

Differentiate F' with respect to z* and u?,

V (wiziy 1
Vi) 2
v . . FT I .
(ztut) - :
Vi) In
(i) H
92 f 92 f 92 f
dz1 01 ‘ dz10z; u' dz10wn ‘ 0
9% f 82]‘[9% f
Az 0z u' Az 0z u' Az dzn u' 9/6’1 = S
52 f 82]‘[52
drpndx1 ut o drndw; ut o Oxndxn u' 0
0 " 0 0
w'Vif Vh
- (VhT 0) ’ (76)
where VA = (0, ..., fl. — 5, 0, ..., 0)T.

Using the fact that V2 f is positive definite and Vi # 0, since fr, —8i=
—1/u’, it is not difficult to verify that V(.. F is nonsingular at (£';4'; 8).
Therefore, by the implicit function theorem, the lemma is proved. O

From Lemmas 1, 2, and 3, we obtain the following theorem:

Theorem 12 Given 3 € R™ and ils corresponding projection set 5‘, let &
be an extreme point of S along the x; direction. Let d = (dy, dy, ..., d,)T
and d = (#1 — 1,23 — €9, ..., &7 —¢,)T. Then, there is a neighborhood
N(8, €) of § and a function d : R™ — R"™ continuous and differentiable in

N (4, €) such that d = d(3).
Proof: Simply set d;(s) = zi(s) — ¢; and then apply Lemma 3. o

4.4 Solving the Constrained Subproblems

In this section, we discuss the techniques for solving the constrained opti-
mization subproblem (64). The solution to such a problem is required to
evaluate d;, ¢ = 1,...,n in the least squares problem (61). We will again

22

only consider the formulation (66). The results can be extended to general
cases.

A constrained optimization problem can be expensive to solve [12, 15].
However, the problem (66) has a special structure. It is a problem with a
linear objective function and a nonlinear convex constraint. Also, as shown
in the preceding section, the solution to the problem is unique and can be
obtained by solving a system of nonlinear equations:

Fa;u) = (V“}fgi;“)) =0, (77)

where [(2;u) is the Lagrangian function for the problem (66), u is the La-
grangian multiplier, and h(z) = f(z) — g(z).
Note that the Jacobian of F(z;u) is

VF(a;u)T = (vvgf;(hx(;;) Vho(x)) : (78)

and V2[(z,u)is symmetric positive definite (the proof for Lemma 2). There-
fore, to solve the system (77), we can use the quasi-Newton method with a
structural BFGS secant update by [30, 9]. Also, in computing the Newton
step, we can take advantage of this special property to solve each linear
system efficiently.

By a secant method for solving a system of nonlinear equations

F(z) =0, (79)

where F': R® — R"™, we mean the iterative procedure

Bs = —F(z) (80)
ry = x+s (81)
By = B(z,s,y,B), (82)

where s is the quasi-Newton step, y = F'(24)— F(z), and By is required to
satisfy the secant equation

Bys=y, (83)

where B, is an approximate to the first-order information for F(z;) and
is obtained by updating B with a process called the secant update. Among

23

various kinds of secant updates, the BFGS update is in some sense the most
effective one. However, it requires the Jacobian to be symmetric positive
definite.

Often, in practice, a part of the first order information is available, and
we need only to approximate the rest. This kind of secant approximation is
referred to as the structural secant update, for the special structure of the
problem is taken into account. The structural BFGS update approximates
the unknown part of the first order information using the BFGS update, but
computes the available part exactly.

Now consider the system (77). Part of its first order information, Vh(z),
can be computed exactly, while V2{(z;u) needs to be approximated. Since
V2i(z;u) is symmetric positive definite, we can apply the structural BFGS
update. Therefore, a secant method for the system (79) can be formulated
as the following iterative procedure:

B (B Vh(x)) (84)

Vi(z)T 0
Bs = —F(z;u) (85)
(z43ug) = (a3u)+ s (86)
T Biss'B
By = B+ yy- Diss” by (87)

yT's sT Bys

By = (Vhl(a;)T th)x”)' (88)

Note that in the above procedure, a linear system
Bs = —-F (89)

needs to be solved for each update, where

B B, Vh
b= (VAT 0) (90)
with B; being symmetric positive definite. We can solve this system as
follows:

First, let s = (z;a)T and —F = (y; 8)7, where z,y € R", and a and j3

are scalars. Rewrite the system as
Bz +Vha = y (91)
vilte = 3. (92)

24

Solve this system for z and a to obtain

v = B 'Y(y-Vha) (93)
VhT B ty —

= v r b (94)
VT B'Vh

This is equivalent to the following steps:

Ba = Vh (95)

Bb = y (96)

r = b—Vha (97)
ViTh - 3

¢ T TRt (98)

where, since B; is symmetric positive definite, the equations (95) and (96)
can be solved by using the Cholesky factorization [18].

5 Solving the Linear Integer Minimax Subprob-
lems

We now discuss how to solve the linear integer minimax subproblems in the
subgradient algorithm. The problems are formulated in the following form:

ming,cpgn {p(i)(x) =max {g,»(z), 7 =0, ..., t}}, (99)

or, equivalently,

min 7 (100)
st. =2 gun(e) J=0,...,10 (101)
1>2 >0, z integral, (102)

where g,;) is the jth linear supporting function generated by the algorithm,
and ¢ indicates that the problem is the one in the ith iteration.

The above problem is a linear integer programming problem with one
continuous variable and can be solved with an enumeration method [1, 2].
Also, observe that p(it1) is generated by adding one more supporting plane
to p'9, which implies that problems in the ith and (i + 1)th iterations are
almost the same except that the problem in the (i 4+ 1)th iteration has one

25

more constraint. Therefore, to solve the (i + 1)th problem, we can use the
result from solving the ¢th problem to reduce the total computation.

We present a branch-and-bound procedure for solving the problem (100).
A branch-and-bound procedure, as illustrated in Algorithm 3 (Figure 5),
solves the problem (100) as follows: First, a relaxed problem, the problem
without integrality constraints, is solved. If a 0-1 integer solution z is ob-
tained, the algorithm terminates, and « is an optimal solution. Otherwise,
x; for some j is set to 1 or 0, and two corresponding subproblems are gener-
ated. Recursively, for each subproblem, again, a relaxed problem is solved.
If the optimal value of the relaxed problem is larger than a known upper
bound for the optimal value of the original problem, the subproblem is elim-
inated, and is not considered any more. If a 0-1 integer solution is obtained,
the solution is locally optimal to the original problem. An upper bound for
the optimal value of the original problem is obtained. Otherwise, the sub-
problem is divided, and two more subproblems are generated. The process
continues until all subproblems are either eliminated or solved. Among all
0-1 solutions obtained for the subproblems, the one that yields the smallest
objective value is the optimal solution to the original problem [3, 13, 26].

Let the relaxed problem for the problem (100) be the following:

min 7 (103)
st. 1> g.0)(2) J=0,...,1 (104)
1>z >0. (105)

In Algorithm 3, p = (p1,p2, ..., pn) represents the problem that is the same
as the relaxed problem (103) except that some z;’s are set to 1 or 0, where

p; = 1 ifandonlyif =z; issetto 1 (106)
p; = 0 ifandonlyif z; issetto 0 (107)
p; = A otherwise. (108)

Also, P is a stack, and push and pop are two standard stack operations.

In Algorithm 3, when a locally optimal solution is found, an upper bound
for the optimal value is obtained. Let the upper bound be denoted by (7).
Then, since a solution that provides an objective value better than (%) is
always desired, the strategy to choose a branching variable is to try the
variable that may reduce the current objective value if it is set to 1. Write
a problem p in the following form:

min 7 (109)

26

Algorithm 3 {Solving integer minimaz problems}

0 {Initialization}
p=(ANA,...,N), P=¢, push(p, P)
gz(f) = —00, 7V =minggj<; {f(21))}
1 {Iteration}
do while P # ¢
1.1 { Problem selection and relaxation}
solve p = pop(P)
let gz(f) be the optimal value
let ng) be the optimal solution

1.2 { Prunning}
(

if gpi) > 7). go to next loop

(v)

if ng) is integral, 7Y = min (E(i),gp) and go to next loop

1.3 { Branching}
pick up z; for some j with p; = A
set p; = 0, push(p, P)
set p; = 1, push(p, P)
end do
2 { Termination}

(v)

the solution z,’ for some p that yields z(1) is optimal

Figure 5: Solving integer minimax problems

27

st. n > bjtanri+...+apmry, (110)

j=0, ..., ¢ (111)

I >a >0, (112)

assuming pr = A Vk =1, ..., m. Then, a branching variable z; for this

problem is selected if k£ solves the problem:

Dyin {nax Ab; + aji}}. (113)
The relaxed problems can be solved by using a standard dual simplex
method [4, 5]. Let p@ and pl+1) be the relaxed problems for the ith and
(i + 1)th linear integer minimax subproblems, respectively. As we have
mentioned before, pit1) is the same as p(9) except that it has one more con-
straint. The dual optimal basis for p(9) is dual feasible for p(1). Therefore,
pli+D) can be solved with the dual optimal basis for p() as its initial basis.
Also, if p is a problem, and s is its subproblem, s and p have a similar
relationship as p(*t1) and p(): s is the same as p except that s contains one
more constraint z; = 1/0 for some j. So, the dual optimal basis for p can
be used as the initial basis for s.

6 Preliminary Test Results

A program has been written to test the subgradient algorithm with the fol-
lowing problems:

#1:

Objective function:

S et 1830 2+ 0.81n
Optimal solution: z; =1, i =1,...,n

#2:

Objective function:
25 22+ S i — 250 (192021 + 1.12g;) + 1.205n
Optimal solution: x9,_y =1, 29, =0, i =1,...,n/2

#3:

Objective function:

iy (2 = 0.9)%7

28

Optimal solution: z; =1, ¢ =1,...,n

#4:
Objective function:
St a2 — 083" x; +0.16n

Optimal solution: z; =0, ¢ =1,...,n

These problems are constructed so that the problem dimensions are scalable
and the optimal solutions are easy to verify. Problem #1 is a simple problem
with a separable objective function. Problem #2 represents an unseparable
case. The objective function for Problem #3 is more complicated in a certain
way. Problem #4 is a geometrically very symmetric problem. It exemplifies
the case when the subgradient algorithm sometimes may require many steps
to converge.

The test was conducted on a parallel machine nCUBE located at Caltech.
However, the parallel implementation of the algorithm will not be addressed
in this paper. Interested readers are referred to [32] for more details. The
test was not a complete one in terms of both problem types and sizes. Many
implementation details still need to be worked out before more numerical
studies can be made. Nevertheless, the results obtained through this simple
implementation have demonstrated that the subgradient algorithm is very
effective for solving most of the test problems.

Listed in Table 1 to 7 are samples of the test results. The tables contain
the problem dimensions, the initial guesses, and the numbers of iterations
required to find an optimal solution. For a problem of dimension n, there
are 2" number of 0-1 feasible points. Therefore, in the worst case, the algo-
rithm may need to search through all these points for an optimal solution.
However, the algorithm actually solved the test problems in only a few iter-
ations. The major reason is because that the algorithm can determine the
optimal solution as soon as it is generated, using the necessary and sufficient
condition. This fact is not true for all traditional combinatorial methods,
for example, the branch-and-bound method, which cannot determine an op-
timal solution until all necessary feasible points are enumerated. The initial
guesses (or, in other words, the starting points) do make differences in re-
quired numbers of iterations: Some lead to an optimal solution in a few
steps, while others may need more steps. However, the mathematics for
why this is the case and how one can choose good starting points has not
yvet been fully understood.

Table 1 contains the results for Problem #1 of dimension 8 with different

29

Table 1: Test problem: #1

Initial Guess

Iteration

0,0,0,0,0,0,0,0

2

0,0,0,0,0,0,0,1

0,0,0,0,0,0,1,1

0,0,0,0,0,1,1,1

0,0,0,0,1,1,1,1

0,0,0,1,1,1,1,1

0,1,1,1,1,1,1,1

LI11,1,0,1,1

0,1,0,1,0,1,0,1

0,0,1,1,0,0,1,1

0,1,1,1,0,1,1,1

0| 0| 0| 0| 0| o 0| | Co| || 0| 0|3

()
()
()
()
()
()
(0,0,1,1,1,1,1,1)
()
()
()
()
()
()

0,0,0,1,0,0,0,1

WIN[IN|IN| | =[N WN|W| W]~

Table 2: Test problem: #1

n | Initial Guess | Iteration
8 (0,...,0) 2
16 (0,...,0) 2
32 (0,...,0) 2

30

Table 3: Test problem: #2

n | Initial Guess | Iteration
8 | (0,0,...,0,0) 3
16 | (0,1,...,0,1) 2
32| (0,0,...,0,0) 3

Table 4: Test problem: #3

n Initial Guess Iteration
8 1(0,0,0,0,0,0,0,0) 2
8 1(0,0,0,0,0,0,0,1) 2
8 1(0,0,0,0,0,0,1,1) 2
8 1(0,0,0,0,0,1,1,1) 2

Table 5: Test problem: #3

n Initial Guess Iteration
16 | (0,...,0,0,0,0,0,0) 2
16 | (0,...,0,0,0,0,0,1) 2
16 | (0,...,0,0,0,0,1,1) 2
16 | (0,...,0,0,0,1,1,1) 3
16 | (0,...,0,0,1,1,1,1) 2
16 | (0,...,0,1,1,1,1,1) 2

31

Table 6: Test problem: #3

n | Initial Guess | Iteration
32 (0,...,0,1) 3
32 (0,1,...,1) 2
64 (0,...,0) 2
64 (1,...1) 1

Table 7: Test problem: #4

n | Initial Guess | Iteration
4 (0,0,0,0) 13
4 (0,0,0,1) 11
4 (0,0,1,0) 11
4 (0,0,1,1) 13
4 (0,1,0,0) 11
4 (0,1,0,1) 13
4 (0,1,1,0) 13
4 (0,1,1,1) 11
4 (1,0,0,0) 11
4 (1,0,0,1) 13
4 (1,0,1,0) 13
4 (1,0,1,1) 11
4 (1,1,0,0) 13
4 (1,1,0,1) 11
4 (1,1,1,0) 11
4 (1,1,1,1) 13

32

starting points. Only up to 7 iterations were used by the algorithm to find an
optimal solution. When the optimal solution was used as the starting point,
the algorithm was able to determine the solution immediately by finding a
zero subgradient for the objective function at this solution, and therefore, it
only took one iteration.

Tables 2 and 3 contain the results for Problem #1 and #2 with differ-
ent dimensions. We see that with the same staring point, the numbers of
iterations did not change very much as problem dimensions increased.

Tables 4, 5, and 6 contain the results for Problem 3 with different starting
points and problem dimensions. We did not enumerate all possible starting
points (there are too many). In any case, we can conclude from these results
that with a reasonable starting point, the algorithm can find an optimal
solution for this problem in only a few iterations. The biggest problem for
this case is of dimension 64. The total number of integer points is 264, a huge
number. However, the subgradient algorithm did not need to enumerate
many of these points, but stopped immediately after an optimal solution
was reached.

We understand that the nonlinear integer programming problem is AP-
hard, and therefore, it is impossible to find both an efficient and a general
solution [14, 23]. Hence we do not expect the subgradient algorithm to be
able to solve all the problems efficiently, either. Problem #4 shows that the
subgradient algorithm cannot find an optimal solution in a small number
of steps. From Table 7, we see that for most starting points, the algorithm
enumerated almost all the integer points. The reason is that the problem
is geometrically very symmetric. The “lifting” process failed to find good-
enough supporting planes, and hence the zero subgradient for the optimal
solution. Therefore, the algorithm was not able to stop even if the optimal
solution was found. The algorithm continued until the second optimality
condition was satisfied (i.e., an iterate was repeated). However, because of
the symmetry, the second condition also required many steps.

Finally, we point out that we also tested Problem #1 (n = 8) with the
subgradient in each iteration simply set to the gradient of the continuous
objective function. With this choice of subgradient, the algorithm was not
able to find an optimal solution even in more than 25 iterations. This result
shows the significance of computing good subgradients and hence supporting
planes by the lifting process.

33

7 Concluding Remarks

We have presented a new algorithm for nonlinear integer programming. Our
approach is based on considering the problem as a nonsmooth problem and
using the subgradient information to linearize the nonlinear objective func-
tion. The subgradient algorithm searches for an optimal solution iteratively
through integer points, and in each iteration, it generates the next point
by solving the problem for a local piecewise linear model, constructed with
the supporting planes for the objective function at a set of integer points
already generated. In order to determine whether an iterate is optimal, two
optimality testing criteria have been established and are employed in the
algorithm. One is the necessary and sufficient condition for the optimal so-
lution. It is established with standard nonsmooth function theories. The
other one is based on a combinatorial property: an iterate is optimal if it is
repeated. This one, in particular, is useful to keep the algorithm finite.

We have discussed how to compute the supporting planes using spe-
cial continuous optimization techniques. Problem formulations and related
mathematical results are presented, and numerical methods are given.

The piecewise linear subproblem can be solved by using standard linear
integer programming methods. However, a special branch-and-bound pro-
cedure is designed that exploits the problem structure and hence can solve
the subproblem efficiently.

A program has been written to test the subgradient algorithm. Pre-
liminary results show that the algorithm solves most of the test problems
effectively.

Several aspects of this work may be extended. The most important one is
a more complete numerical test. This will not be a trivial job because a good
implementation of the algorithm requires considerable work. In addition,
few test problems are available, while artificial problems usually are too
arbitrary to make any specific conclusions. However, a relatively complete
test on a class of quadratic 0-1 integer programs is feasible and will be very
useful for understanding basic numerical properties of the algorithm. A
performance comparison between the algorithm and a traditional method,
say, a branch-and-bound method, can also be conducted.

We have mentioned that any problem can be formulated so that its
continuous objective function is strictly convex. However, we have not yet
given a truly practical method to convert a given function, for example,
how to choose an appropriate p in (50). More work needs to be done on this
subject.

34

The subgradient algorithm can be extended to mixed-integer nonlinear
programming. However, we have not studied possible successes and limita-
tions of applying the algorithm to this class of problems.

The technique for computing the supporting planes described in this
paper can be improved by replacing the lifting process with a procedure that
can compute integer lattice-free convex bodies. If such an “oracle” exists,
even better supporting planes can be obtained, and the algorithm will be
more effective. Finding such an “oracle” itself is an important research issue
in integer programming [24, 25].

Acknowledgments

The author is grateful to Professors John k. Dennis and Robert E. Bixby
for many discussions relating to this work, and for their support, encourage-
ment, and guidance during his Ph.D. study.

References

[1] E. Balas and J. B. Mazzola [1984a]. Nonlinear 0-1 Programming: I.
Linearization Techniques. Mathematical Programming 30, 1-21.

[2] E. Balas and J. B. Mazzola [1984b]. Nonlinear 0-1 Programming: II.
Dominance Relations and Algorithms. Mathematical Programming 30,
22-45.

[3] R. E. Bixby [1987]. Notes on Combinatorial Optimization. Technical
Report TR87-21, Dept. of Math. Sci., Rice Univ., Houston.

[4] R. E. Bixby [1990]. Implementing the Simplex Method: The Initial Ba-
sis. Technical Report TR90-32, Dept. of Math. Sci., Rice Univ., Hous-
ton.

[6] V. Chvatal [1980]. Linear Programming. W. H. Freeman and Company,
New York.

[6] F.H. Clarke [1983]. Optimization and Nonsmooth Analysis. John Wiley,
New York.

35

[7]

[15]

[16]

[17]

Y. Crama, P. Hansen and B. Jaumard [1990]. The Basic Algorithm for
Pseudo-Boolean Programming Revisited. Discrete Applied Mathemat-
ics.

G. B. Dantzig [1960]. On the Significance of Solving Linear Program-
ming Problems with Some Integer Variables. The Rand Corporation,
Document P1486.

J. E. Dennis, Jr., H. J. Martinez and R. A. Tapia [1989]. A Convergence
Theory for the Structured BFGS Secant Method with an Application to
Nonlinear Least Squares. Journal of Optimization Theory and Applica-
tions 61, 159-176.

J. E. Dennis, Jr., and R. B. Schnabel [1983]. Numerical Methods for
Unconstrained Optimization and Nonlinear Fquations. Prentice-Hall,

Englewood Cliffs, N.J.

P. van Emde-Boas [1981]. Another NP-Complete Partition Problem and
the Complexity of Computing Short Vectors in a Lattice. Report 81-04,
Mathematical Institute, Univ. of Amsterdam, Amsterdam.

R. Fletcher [1987]. Practical Methods of Optimization. John Wiley &
Sons, New York.

R.S. Garfinkel and G. L. Nemhauser [1972]. Integer Programming. John
Wiley & Sons, Inc., New York.

M. R. Garey and D. S. Johnson [1979]. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and Com-
pany, New York.

P. E. Gill, W. Murray, and M. H. Wright [1981]. Practical Optimization.
Academic Press, New York.

F. Glover and E. Woolsey [1973]. Further Reduction of Zero-One Poly-
nomial Programs to Zero-One Linear Programming Problems. Opera-
tions Research 21(1), 156-161.

F. Glover and E. Woolsey [1974]. Converting the 0-1 Polynomial Pro-
gramming Problems to a 0-1 Linear Program. Operations Research 22,
180-182.

36

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

G. H. Golub and C. F. Van Loan [1989]. Matriz Computations. The
Johns Hopkins Univ. Press, Baltimore.

M. Grotschel, L. Lovész, and A. Schrijver [1987]. Geometric Algorithm
and Combinatorial Optimization. Springer, New York.

P. L. Hammer, I. Rosenberg and S. Rudeanu [1963]. On the Determina-
tion of the Minima of Pseudo-Boolean Functions. (In Romanian) Studii
si Cercetari Matematice 14, 359-364.

P. L. Hammer and S. Rudeanu [1968]. Boolean Methods in Operations
Research and Related Areas. Springer, New York.

P. Hansen, B. Jaumard, V. Mathon [1989]. Constrained Nonlin-
ear 0-1 Programming. RRR #47-89, RUTCOR, Rutgers Univ., New
Brunswick, N.J.

J. E. Hopcroft and J. D. Ullman [1979]. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley Publishing Com-
pany, Reading, MA.

L. Lovész [1986]. An Algorithmic Theory of Numbers, Graphs and Con-
vezity. CBMS-NSF Regional Conference Series in Applied Mathematics
50. STAM, Philadelphia.

L. Lovész [1989]. Geometry of Numbers and Integer Programming. M.
Iri and K. Tanabe (eds.), Mathematical Programming, 177-201, KTK
Scientific Publisher, Tokyo.

G. L. Nemhauser and L. A. Wolsey [1988]. Integer and Combinatorial
Optimization. John Wiley & Sons, New York.

J. M. Ortega and W. C. Rheinboldt [1970]. Iterative Solution of Non-
linear Fquations in Several Variables. Academic Press, New York.

R. T. Rockafellar [1970]. Convex Analysis. Princeton University Press,
Princeton, N.J.

N. Z. Shor [1985]. Minimization Methods for Non-Differentiable Func-
tions. Springer-Verlag, New York.

R. Tapia [1988]. On Secant Updates for Use in General Constrained
Optimization. Mathematics of Computation 51, 181-202.

37

[31] R. Tapia [1990]. An Introduction to the Algorithms and Theory of Con-
strained Optimization. Lecture Notes, Dept. of Math. Sci., Rice Univ.,
Houston.

[32] Z. Wu [1991]. A Subgradient Algorithm for Nonlinear Integer Program-
ming and Its Parallel Implementation. Ph.D. thesis, Dept. of Math.
Sci., Rice Univ., Houston.

38

